Neighborhoods of periodic orbits and the stationary distribution of a noisy chaotic system.
نویسندگان
چکیده
The finest state-space resolution that can be achieved in a physical dynamical system is limited by the presence of noise. In the weak-noise approximation, the stochastic neighborhoods of deterministic periodic orbits can be computed from distributions stationary under the action of a local Fokker-Planck operator and its adjoint. We derive explicit formulas for widths of these distributions in the case of chaotic dynamics, when the periodic orbits are hyperbolic. The resulting neighborhoods form a basis for functions on the attractor. The global stationary distribution, needed for calculation of long-time expectation values of observables, can be expressed in this basis.
منابع مشابه
CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملStabilization of chaotic systems via fuzzy time-delayed controller approac
In this paper, we investigate the stabilization of unstable periodic orbits of continuous time chaotic systems usingfuzzy time-delayed controllers. For this aim, we present a control method that can achieve stabilization of an unstableperiodic orbit (UPO) without any knowledge of the system model. Our proposal is attained progressively. First, wecombine the input-to-state linearizing controller...
متن کاملAnalysis of chaotic vibration in a hexagonal centrifugal governor system
In this paper, the periodic, quasi periodic and chaotic responses of rotational machines with a hexagonal centrifugal governor are studied. The external disturbance is assumed as a sinusoid effect. By using the forth order Rung-Kutta numerical integration method, bifurcation diagram, largest Lyapunov exponent and Lyapunov dimension are calculated and presented to detect the critical controlling...
متن کاملIdentification of Nonlinear Modal Interactions in a Beam-Mass-Spring-Damper System based on Mono-Frequency Vibration Response
In this paper, nonlinear modal interactions caused by one-to-three internal resonance in a beam-mass-spring-damper system are investigated based on nonlinear system identification. For this purpose, the equations governing the transverse vibrations of the beam and mass are analyzed via the multiple scale method and the vibration response of the system under primary resonance is extracted. Then,...
متن کاملChaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles
The chaotic dynamics of Alfvén waves in space plasmas governed by the derivative nonlinear Schrödinger equation, in the low-dimensional limit described by stationary spatial solutions, is studied. A bifurcation diagram is constructed, by varying the driver amplitude, to identify a number of nonlinear dynamical processes including saddlenode bifurcation, boundary crisis, and interior crisis. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 92 6 شماره
صفحات -
تاریخ انتشار 2015